VLQ.fr100777 0 0 462106 12326415233 5242 0 VLQ.fr dans VLQ – Pièce jointe – FeynRules

VLQ: VLQ.fr

Pièce jointe VLQ.fr, 48.2 KB (ajoutée par buchkremer, il y a 10 mois)

FeynRules main file

Ligne 
1(***************************************************************************************************************)
2(******                       FeynRules mod-file for Model Independent searches of top partners           ******)
3(******                         X(5/3), T(2/3), B(-1/3) & Y(-4/3) with arbitrary couplings                ******)
4(******                                                                                                   ******)
5(******     Authors: M. Buchkremer, G. Cacciapaglia, A. Deandrea,L. Panizzi                               ******)
6(******                                                                                                   ******)
7(***************************************************************************************************************)
8
9M$ModelName = "VLQ";
10
11
12M$Information = {Authors -> {"M. Buchkremer","G. Cacciapaglia","A. Deandrea","L. Panizzi"},
13             Version -> "1.2.5",
14             Date -> "10. 04. 2013",
15             Institutions -> {"Universite catholique de Louvain (CP3)","Universite de Lyon (CNRS/IN2P3)","University of Southampton (School of Physics and Astronomy)"},
16             Emails -> {"mathieu.buchkremer@uclouvain.be", "g.cacciapaglia@ipnl.in2p3.fr","deandrea@ipnl.in2p3.fr", "l.panizzi@soton.ac.uk"}};
17
18
19(******* Index definitions ********)
20
21IndexRange[ Index[Generation] ] = Range[3]
22IndexRange[ Index[Colour] ] = NoUnfold[Range[3]]
23IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]]
24IndexRange[ Index[SU2W] ] = Unfold[Range[3]]
25IndexStyle[Colour, i]
26IndexStyle[Generation, f]
27IndexStyle[Gluon ,a]
28IndexStyle[SU2W ,k]
29
30(******* Gauge parameters (for FeynArts) ********)
31
32GaugeXi[ V[1] ] = GaugeXi[A];
33GaugeXi[ V[2] ] = GaugeXi[Z];
34GaugeXi[ V[3] ] = GaugeXi[W];
35GaugeXi[ V[4] ] = GaugeXi[G];
36GaugeXi[ S[1] ] = 1;
37GaugeXi[ S[2] ] = GaugeXi[Z];
38GaugeXi[ S[3] ] = GaugeXi[W];
39GaugeXi[ U[1] ] = GaugeXi[A];
40GaugeXi[ U[2] ] = GaugeXi[Z];
41GaugeXi[ U[31] ] = GaugeXi[W];
42GaugeXi[ U[32] ] = GaugeXi[W];
43GaugeXi[ U[4] ] = GaugeXi[G];
44
45(****************  Parameters *************)
46
47M$Parameters = {
48
49  (* External parameters, SM *)
50
51  \[Alpha]EWM1== {
52        ParameterType -> External,
53        BlockName -> SMINPUTS,
54        ParameterName -> aEWM1,
55        InteractionOrder -> {QED, -2},
56        Value -> 127.9,
57        Description -> "Inverse of the electroweak coupling constant"},
58
59  Gf == {
60        ParameterType -> External,
61        BlockName -> SMINPUTS,
62        TeX -> Subscript[G, f],
63        InteractionOrder -> {QED, 2},
64        Value -> 1.16600 * 10^(-5),
65        Description -> "Fermi constant"},
66
67  \[Alpha]S == {
68        ParameterType -> External,
69        BlockName -> SMINPUTS,
70        TeX -> Subscript[\[Alpha], s],
71        ParameterName -> aS,
72        InteractionOrder -> {QCD, 2},
73        Value -> 0.118,
74        Description -> "Strong coupling constant at the Z pole."},
75
76  ymdo == {
77        ParameterType -> External,
78        BlockName -> YUKAWA,
79        Value -> 5.04*10^(-3),
80        OrderBlock -> {1},
81        Description -> "Down Yukawa mass"},
82
83  ymup == {
84        ParameterType -> External,
85        BlockName -> YUKAWA,
86        Value -> 2.55*10^(-3),
87        OrderBlock -> {2},
88        Description -> "Up Yukawa mass"},
89
90  yms == {
91        ParameterType -> External,
92        BlockName -> YUKAWA,
93        Value -> 0.101,
94        OrderBlock -> {3},
95        Description -> "Strange Yukawa mass"},
96
97  ymc == {
98        ParameterType -> External,
99        BlockName -> YUKAWA,
100        Value -> 1.25,
101        OrderBlock -> {4},
102        Description -> "Charm Yukawa mass"},
103
104  ymb == {
105        ParameterType -> External,
106        BlockName -> YUKAWA,
107        Value -> 4.2,
108        OrderBlock -> {5},
109        Description -> "Bottom Yukawa mass"},
110
111  ymt == {
112        ParameterType -> External,
113        BlockName -> YUKAWA,
114        Value -> 174.3,
115        OrderBlock -> {6},
116        Description -> "Top Yukawa mass"},
117
118  yme == {
119        ParameterType -> External,
120        BlockName -> YUKAWA,
121        Value ->  5.11*10^(-4),
122        OrderBlock -> {11},
123        Description -> "Electron Yukawa mass"},
124
125  ymm == {
126        ParameterType -> External,
127        BlockName -> YUKAWA,
128        Value -> 0.10566,
129        OrderBlock -> {13},
130        Description -> "Muon Yukawa mass"},
131
132  ymtau == {
133        ParameterType -> External,
134        BlockName -> YUKAWA,
135        Value -> 1.777,
136        OrderBlock -> {15},
137        Description -> "Tau Yukawa mass"},
138
139  CKM == {
140        ParameterType -> External,
141        BlockName -> CKMBlock,
142        ComplexParameter -> False,
143       Indices -> {Index[Generation], Index[Generation]},
144       TensorClass -> CKM,
145       Unitary -> True,
146       Value -> {CKM[1,1] -> 0.97428,
147                 CKM[1,2] -> 0.2253,
148                 CKM[1,3] -> 0.00347,
149                 CKM[2,1] -> 0.2252,
150                 CKM[2,2] -> 0.97345,
151                 CKM[2,3] -> 0.0410,
152                 CKM[3,1] -> 0.00862,
153                 CKM[3,2] -> 0.0403,
154                 CKM[3,3] -> 0.999152},
155       Description -> "SM CKM Matrix"},
156
157  (* External parameters, VLQ *)
158
159  KX == {
160        ParameterType -> External,
161        BlockName -> Kappa,
162        ComplexParameter -> False,
163        Value -> 1,
164        Description -> "Kappa_X parameter"},
165
166  KT == {
167        ParameterType -> External,
168        BlockName -> Kappa,
169        ComplexParameter -> False,
170        Value -> 1,
171        Description -> "Kappa_T parameter"},
172
173  KB == {
174        ParameterType -> External,
175        BlockName -> Kappa,
176        ComplexParameter -> False,
177        Value -> 1,
178        Description -> "Kappa_B parameter"},
179
180  KY == {
181        ParameterType -> External,
182        BlockName -> Kappa,
183        ComplexParameter -> False,
184        Value -> 1,
185        Description -> "Kappa_Y parameter"},
186
187  xitpw == {
188        ParameterType -> External,
189        BlockName -> Xi,
190        ComplexParameter -> False,
191        Value -> 0.4,
192        Description -> "Branching ratio of T in W"},
193
194  xitpz == {
195        ParameterType -> External,
196        BlockName -> Xi,
197        ComplexParameter -> False,
198        Value -> 0.3,
199        Description -> "Branching ratio of T in Z"},
200
201  xitph == {
202        ParameterType -> External,
203        BlockName -> Xi,
204        ComplexParameter -> False,
205        Value -> 0.3,
206        Description -> "Branching ratio of T in H"},
207
208  xibpw == {
209        ParameterType -> External,
210        BlockName -> Xi,
211        ComplexParameter -> False,
212        Value -> 0.4,
213        Description -> "Branching ratio of B in W"},
214
215  xibpz == {
216        ParameterType -> External,
217        BlockName -> Xi,
218        ComplexParameter -> False,
219        Value -> 0.3,
220        Description -> "Branching ratio of B in Z"},
221
222  xibph == {
223        ParameterType -> External,
224        BlockName -> Xi,
225        ComplexParameter -> False,
226        Value -> 0.3,
227        Description -> "Branching ratio of B in H"},
228
229  zetaXuL == {
230        ParameterType -> External,
231        BlockName -> Zeta,
232        ComplexParameter -> False,
233        Value -> 0.3,
234        Description -> "X-u mixing (left-handed)"},
235
236  zetaXcL == {
237        ParameterType -> External,
238        BlockName -> Zeta,
239        ComplexParameter -> False,
240        Value -> 0.3,
241        Description -> "X-c mixing (left-handed)"},
242
243  zetaXtL == {
244        ParameterType -> External,
245        BlockName -> Zeta,
246        ComplexParameter -> False,
247        Value -> 0.4,
248        Description -> "X-t mixing (left-handed)"},
249
250  zetaTuL == {
251        ParameterType -> External,
252        BlockName -> Zeta,
253        ComplexParameter -> False,
254        Value -> 0.3,
255        Description -> "T-u mixing (left-handed)"},
256
257  zetaTcL == {
258        ParameterType -> External,
259        BlockName -> Zeta,
260        ComplexParameter -> False,
261        Value -> 0.3,
262        Description -> "T-c mixing (left-handed)"},
263
264  zetaTtL == {
265        ParameterType -> External,
266        BlockName -> Zeta,
267        ComplexParameter -> False,
268        Value -> 0.4,
269        Description -> "T-t mixing (left-handed)"},
270
271  zetaBdL == {
272        ParameterType -> External,
273        BlockName -> Zeta,
274        ComplexParameter -> False,
275        Value -> 0.3,
276        Description -> "B-d mixing (left-handed)"},
277
278  zetaBsL == {
279        ParameterType -> External,
280        BlockName -> Zeta,
281        ComplexParameter -> False,
282        Value -> 0.3,
283        Description -> "B-s mixing (left-handed)"},
284
285  zetaBbL == {
286        ParameterType -> External,
287        BlockName -> Zeta,
288        ComplexParameter -> False,
289        Value -> 0.4,
290        Description -> "B-b mixing (left-handed)"},
291
292  zetaYdL == {
293        ParameterType -> External,
294        BlockName -> Zeta,
295        ComplexParameter -> False,
296        Value -> 0.3,
297        Description -> "Y-d mixing (left-handed)"},
298
299  zetaYsL == {
300        ParameterType -> External,
301        BlockName -> Zeta,
302        ComplexParameter -> False,
303        Value -> 0.3,
304        Description -> "Y-s mixing (left-handed)"},
305
306  zetaYbL == {
307        ParameterType -> External,
308        BlockName -> Zeta,
309        ComplexParameter -> False,
310        Value -> 0.4,
311        Description -> "Y-b mixing (left-handed)"},
312
313
314  zetaXuR == {
315        ParameterType -> External,
316        BlockName -> Zeta,
317        ComplexParameter -> False,
318        Value -> 0,
319        Description -> "X-u mixing (right-handed)"},
320
321  zetaXcR == {
322        ParameterType -> External,
323        BlockName -> Zeta,
324        ComplexParameter -> False,
325        Value -> 0,
326        Description -> "X-c mixing (right-handed)"},
327
328  zetaXtR == {
329        ParameterType -> External,
330        BlockName -> Zeta,
331        ComplexParameter -> False,
332        Value -> 0,
333        Description -> "X-t mixing (right-handed)"},
334
335  zetaTuR == {
336        ParameterType -> External,
337        BlockName -> Zeta,
338        ComplexParameter -> False,
339        Value -> 0,
340        Description -> "T-u mixing (right-handed)"},
341
342  zetaTcR == {
343        ParameterType -> External,
344        BlockName -> Zeta,
345        ComplexParameter -> False,
346        Value -> 0,
347        Description -> "T-c mixing (right-handed)"},
348
349  zetaTtR == {
350        ParameterType -> External,
351        BlockName -> Zeta,
352        ComplexParameter -> False,
353        Value -> 0,
354        Description -> "T-t mixing (right-handed)"},
355
356  zetaBdR == {
357        ParameterType -> External,
358        BlockName -> Zeta,
359        ComplexParameter -> False,
360        Value -> 0,
361        Description -> "B-d mixing (right-handed)"},
362
363  zetaBsR == {
364        ParameterType -> External,
365        BlockName -> Zeta,
366        ComplexParameter -> False,
367        Value -> 0,
368        Description -> "B-s mixing (right-handed)"},
369
370  zetaBbR == {
371        ParameterType -> External,
372        BlockName -> Zeta,
373        ComplexParameter -> False,
374        Value -> 0,
375        Description -> "B-b mixing (right-handed)"},
376
377  zetaYdR == {
378        ParameterType -> External,
379        BlockName -> Zeta,
380        ComplexParameter -> False,
381        Value -> 0,
382        Description -> "Y-d mixing (right-handed)"},
383
384  zetaYsR == {
385        ParameterType -> External,
386        BlockName -> Zeta,
387        ComplexParameter -> False,
388        Value -> 0,
389        Description -> "Y-s mixing (right-handed)"},
390
391  zetaYbR == {
392        ParameterType -> External,
393        BlockName -> Zeta,
394        ComplexParameter -> False,
395        Value -> 0,
396        Description -> "Y-b mixing (right-handed)"},
397
398
399   (* Internal Parameters, SM *)
400
401  \[Alpha]EW == {
402        ParameterType -> Internal,
403        Value -> 1/\[Alpha]EWM1,
404        TeX -> Subscript[\[Alpha], EW],
405        ParameterName -> aEW,
406        InteractionOrder -> {QED, 2},
407        Description -> "Electroweak coupling contant"},
408
409
410  MW == {
411        ParameterType -> Internal,
412        Value -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*\[Alpha]EW/Gf*MZ^2]],
413        TeX  -> Subscript[M, W],
414        Description -> "W mass"},
415
416  sw2 == {
417        ParameterType -> Internal,
418        Value -> 1-(MW/MZ)^2,
419        Description -> "Squared Sin of the Weinberg angle"},
420
421   ee == {
422        TeX -> e,
423        ParameterType -> Internal,
424        Value -> Sqrt[4 Pi \[Alpha]EW],
425        InteractionOrder -> {QED, 1},
426        Description -> "Electric coupling constant"},
427
428   cw == {
429        TeX -> Subscript[c, w],
430        ParameterType -> Internal,
431        Value -> Sqrt[1 - sw2],
432        Description -> "Cos of the Weinberg angle"}, 
433
434   sw == {
435        TeX -> Subscript[s, w],
436        ParameterType -> Internal,
437        Value -> Sqrt[sw2],
438        Description -> "Sin of the Weinberg angle"}, 
439
440   gw == {
441        TeX -> Subscript[g, w],
442        ParameterType -> Internal,
443        Value -> ee / sw,
444        InteractionOrder -> {QED, 1},
445        Description -> "Weak coupling constant"},
446
447   g1 == {
448        TeX -> Subscript[g, 1],
449        ParameterType -> Internal,
450        Value -> ee / cw,
451        InteractionOrder -> {QED, 1},
452        Description -> "U(1)Y coupling constant"},
453
454   gs == {
455        TeX -> Subscript[g, s],
456        ParameterType -> Internal,
457        Value -> Sqrt[4 Pi \[Alpha]S],
458        InteractionOrder -> {QCD, 1},
459        ParameterName -> G,
460        Description -> "Strong coupling constant"},
461
462   v == {
463        ParameterType -> Internal,
464        Value -> 2*MW*sw/ee,
465        InteractionOrder -> {QED, -1},
466        Description -> "Higgs VEV"},
467
468   \[Lambda] == {
469        ParameterType -> Internal,
470        Value -> MH^2/(2*v^2),
471        InteractionOrder -> {QED, 2},
472        ParameterName -> lam,
473        Description -> "Higgs quartic coupling"},
474
475   muH == {
476        ParameterType -> Internal,
477        Value -> Sqrt[v^2 \[Lambda]],
478        TeX -> \[Mu],
479        Description -> "Coefficient of the quadratic piece of the Higgs potential"},
480
481   yl == {
482        TeX -> Superscript[y, l],
483        Indices -> {Index[Generation]},
484        AllowSummation -> True,
485        ParameterType -> Internal,
486        Value -> {yl[1] -> Sqrt[2] yme / v, yl[2] -> Sqrt[2] ymm / v, yl[3] -> Sqrt[2] ymtau / v},
487        ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau},
488        InteractionOrder -> {QED, 1},
489        ComplexParameter -> False,
490        Description -> "Lepton Yukawa coupling"},
491
492   yu == {
493        TeX -> Superscript[y, u],
494        Indices -> {Index[Generation]},
495        AllowSummation -> True,
496        ParameterType -> Internal,
497        Value -> {yu[1] -> Sqrt[2] ymup / v, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v},
498        ParameterName -> {yu[1] -> yup, yu[2] -> yc, yu[3] -> yt},
499        InteractionOrder -> {QED, 1},
500        ComplexParameter -> False,
501        Description -> "U-quark Yukawa coupling"},
502
503   yd == {
504        TeX -> Superscript[y, d],
505        Indices -> {Index[Generation]},
506        AllowSummation -> True,
507        ParameterType -> Internal,
508        Value -> {yd[1] -> Sqrt[2] ymdo / v, yd[2] -> Sqrt[2] yms / v, yd[3] -> Sqrt[2] ymb / v},
509        ParameterName -> {yd[1] -> ydo, yd[2] -> ys, yd[3] -> yb},
510        InteractionOrder -> {QED, 1},
511        ComplexParameter -> False,
512        Description -> "D-quark Yukawa coupling"},
513
514
515   (************** Internal Parameters, VLQ **************)
516   (* X couplings *)
517
518  KXuL == {
519        ParameterType -> Internal,
520        BlockName -> WIDTH,
521        ComplexParameter -> False,
522        Value -> (ee/sw*Sqrt[zetaXuL/gamma0xw])/Sqrt[2],
523        InteractionOrder -> {QED, 1},
524        Description -> "XuW coupling (left-handed)"},
525
526  KXcL == {
527        ParameterType -> Internal,
528        BlockName -> WIDTH,
529        ComplexParameter -> False,
530        Value -> (ee/sw*Sqrt[zetaXcL/gamma0xw])/Sqrt[2],
531        InteractionOrder -> {QED, 1},
532        Description -> "XcW coupling (left-handed)"},
533
534  KXtL == {
535        ParameterType -> Internal,
536        BlockName -> WIDTH,
537        ComplexParameter -> False,
538        Value -> (ee/sw*Sqrt[zetaXtL/gamma0xw])/Sqrt[2],
539        InteractionOrder -> {QED, 1},
540        Description -> "XtW coupling (left-handed)"},
541
542  KXuR == {
543        ParameterType -> Internal,
544        BlockName -> WIDTH,
545        ComplexParameter -> False,
546        Value -> (ee/sw*Sqrt[zetaXuR/gamma0xw])/Sqrt[2],
547        InteractionOrder -> {QED, 1},
548        Description -> "XuW coupling (right-handed)"},
549
550  KXcR == {
551        ParameterType -> Internal,
552        BlockName -> WIDTH,
553        ComplexParameter -> False,
554        Value -> (ee/sw*Sqrt[zetaXcR/gamma0xw])/Sqrt[2],
555        InteractionOrder -> {QED, 1},
556        Description -> "XcW coupling (right-handed)"},
557
558  KXtR == {
559        ParameterType -> Internal,
560        BlockName -> Kappa,
561        ComplexParameter -> False,
562        Value -> (ee/sw*Sqrt[zetaXtR/gamma0xw])/Sqrt[2],
563        InteractionOrder -> {QED, 1},
564        Description -> "XtW coupling (right-handed)"},
565
566   (* Y couplings *)
567
568  KYdL == {
569        ParameterType -> Internal,
570        BlockName -> Kappa,
571        ComplexParameter -> False,
572        Value -> (ee/sw*Sqrt[zetaYdL/gamma0yw])/Sqrt[2],
573        InteractionOrder -> {QED, 1},
574        Description -> "YdW coupling (left-handed)"},
575
576  KYsL == {
577        ParameterType -> Internal,
578        BlockName -> Kappa,
579        ComplexParameter -> False,
580        Value -> (ee/sw*Sqrt[zetaYsL/gamma0yw])/Sqrt[2],
581        InteractionOrder -> {QED, 1},
582        Description -> "YsW coupling (left-handed)"},
583
584  KYbL == {
585        ParameterType -> Internal,
586        BlockName -> Kappa,
587        ComplexParameter -> False,
588        Value -> (ee/sw*Sqrt[zetaYbL/gamma0yw])/Sqrt[2],
589        InteractionOrder -> {QED, 1},
590        Description -> "YbW coupling (left-handed)"},
591
592  KYdR == {
593        ParameterType -> Internal,
594        BlockName -> Kappa,
595        ComplexParameter -> False,
596        Value -> (ee/sw*Sqrt[zetaYdR/gamma0yw])/Sqrt[2],
597        InteractionOrder -> {QED, 1},
598        Description -> "YdW coupling (right-handed)"},
599
600  KYsR == {
601        ParameterType -> Internal,
602        BlockName -> Kappa,
603        ComplexParameter -> False,
604        Value -> (ee/sw*Sqrt[zetaYsR/gamma0yw])/Sqrt[2],
605        InteractionOrder -> {QED, 1},
606        Description -> "YsW coupling (right-handed)"},
607
608  KYbR == {
609        ParameterType -> Internal,
610        BlockName -> Kappa,
611        ComplexParameter -> False,
612        Value -> (ee/sw*Sqrt[zetaYbR/gamma0yw])/Sqrt[2],
613        InteractionOrder -> {QED, 1},
614        Description -> "YbW coupling (right-handed)"},
615
616   (* T couplings *)
617
618  KTuLw == {
619        ParameterType -> Internal,
620        BlockName -> Kappa,
621        ComplexParameter -> False,
622        Value -> (ee/sw*Sqrt[zetaTuL*xitpw/gamma0tpw])/Sqrt[2],
623        InteractionOrder -> {QED, 1},
624        Description -> "TuW coupling (left-handed)"},
625
626  KTcLw == {
627        ParameterType -> Internal,
628        BlockName -> Kappa,
629        ComplexParameter -> False,
630        Value -> (ee/sw*Sqrt[zetaTcL*xitpw/gamma0tpw])/Sqrt[2],
631        InteractionOrder -> {QED, 1},
632        Description -> "TcW coupling (left-handed)"},
633
634  KTtLw == {
635        ParameterType -> Internal,
636        BlockName -> Kappa,
637        ComplexParameter -> False,
638        Value -> (ee/sw*Sqrt[zetaTtL*xitpw/gamma0tpw])/Sqrt[2],
639        InteractionOrder -> {QED, 1},
640        Description -> "TtW coupling (left-handed)"},
641
642  KTuRw == {
643        ParameterType -> Internal,
644        BlockName -> Kappa,
645        ComplexParameter -> False,
646        Value -> (ee/sw*Sqrt[zetaTuR*xitpw/gamma0tpw])/Sqrt[2],
647        InteractionOrder -> {QED, 1},
648        Description -> "TuW coupling (right-handed)"},
649
650  KTcRw == {
651        ParameterType -> Internal,
652        BlockName -> Kappa,
653        ComplexParameter -> False,
654        Value -> (ee/sw*Sqrt[zetaTcR*xitpw/gamma0tpw])/Sqrt[2],
655        InteractionOrder -> {QED, 1},
656        Description -> "TcW coupling (right-handed)"},
657
658  KTtRw == {
659        ParameterType -> Internal,
660        BlockName -> Kappa,
661        ComplexParameter -> False,
662        Value -> (ee/sw*Sqrt[zetaTtR*xitpw/gamma0tpw])/Sqrt[2],
663        InteractionOrder -> {QED, 1},
664        Description -> "TtW coupling (right-handed)"},
665
666  KTuLz == {
667        ParameterType -> Internal,
668        BlockName -> Kappa,
669        ComplexParameter -> False,
670        Value -> (ee/sw*Sqrt[zetaTuL*xitpz/gamma0tpz])/2/cw,
671        InteractionOrder -> {QED, 1},
672        Description -> "TuZ coupling (left-handed)"},
673
674  KTcLz == {
675        ParameterType -> Internal,
676        BlockName -> Kappa,
677        ComplexParameter -> False,
678        Value -> (ee/sw*Sqrt[zetaTcL*xitpz/gamma0tpz])/2/cw,
679        InteractionOrder -> {QED, 1},
680        Description -> "TcZ coupling (left-handed)"},
681
682  KTtLz == {
683        ParameterType -> Internal,
684        BlockName -> Kappa,
685        ComplexParameter -> False,
686        Value -> (ee/sw*Sqrt[zetaTtL*xitpz/gamma0tpz])/2/cw,
687        InteractionOrder -> {QED, 1},
688        Description -> "TtZ coupling (left-handed)"},
689
690  KTuRz == {
691        ParameterType -> Internal,
692        BlockName -> Kappa,
693        ComplexParameter -> False,
694        Value -> (ee/sw*Sqrt[zetaTuR*xitpz/gamma0tpz])/2/cw,
695        InteractionOrder -> {QED, 1},
696        Description -> "TuZ coupling (right-handed)"},
697
698  KTcRz == {
699        ParameterType -> Internal,
700        BlockName -> Kappa,
701        ComplexParameter -> False,
702        Value -> (ee/sw*Sqrt[zetaTcR*xitpz/gamma0tpz])/2/cw,
703        InteractionOrder -> {QED, 1},
704        Description -> "TcZ coupling (right-handed)"},
705
706  KTtRz == {
707        ParameterType -> Internal,
708        BlockName -> Kappa,
709        ComplexParameter -> False,
710        Value -> (ee/sw*Sqrt[zetaTtR*xitpz/gamma0tpz])/2/cw,
711        InteractionOrder -> {QED, 1},
712        Description -> "TtZ coupling (right-handed)"},
713
714  KTuLh == {
715        ParameterType -> Internal,
716        BlockName -> Kappa,
717        ComplexParameter -> False,
718        Value -> (Sqrt[zetaTuL*xitph/gamma0tph]),
719        InteractionOrder -> {QED, 0},
720        Description -> "TuH coupling (left-handed)"},
721
722  KTcLh == {
723        ParameterType -> Internal,
724        BlockName -> Kappa,
725        ComplexParameter -> False,
726        Value -> (Sqrt[zetaTcL*xitph/gamma0tph]),
727        InteractionOrder -> {QED, 0},
728        Description -> "TcH coupling (left-handed)"},
729
730  KTtLh == {
731        ParameterType -> Internal,
732        BlockName -> Kappa,
733        ComplexParameter -> False,
734        Value -> (Sqrt[zetaTtL*xitph/gamma0tph]),
735        InteractionOrder -> {QED, 0},
736        Description -> "TtH coupling (left-handed)"},
737
738  KTuRh == {
739        ParameterType -> Internal,
740        BlockName -> Kappa,
741        ComplexParameter -> False,
742        Value -> (Sqrt[zetaTuR*xitph/gamma0tph]),
743        InteractionOrder -> {QED, 0},
744        Description -> "TuH coupling (right-handed)"},
745
746  KTcRh == {
747        ParameterType -> Internal,
748        BlockName -> Kappa,
749        ComplexParameter -> False,
750        Value -> (Sqrt[zetaTcR*xitph/gamma0tph]),
751        InteractionOrder -> {QED, 0},
752        Description -> "TcH coupling (right-handed)"},
753
754  KTtRh == {
755        ParameterType -> Internal,
756        BlockName -> Kappa,
757        ComplexParameter -> False,
758        Value -> (Sqrt[zetaTtR*xitph/gamma0tph]),
759        InteractionOrder -> {QED, 0},
760        Description -> "TtH coupling (right-handed)"},
761
762   (* B couplings *)
763
764  KBdLw == {
765        ParameterType -> Internal,
766        BlockName -> Kappa,
767        ComplexParameter -> False,
768        Value -> (ee/sw*Sqrt[zetaBdL*xibpw/gamma0bpw])/Sqrt[2],
769        InteractionOrder -> {QED, 1},
770        Description -> "BdW coupling (left-handed)"},
771
772  KBsLw == {
773        ParameterType -> Internal,
774        BlockName -> Kappa,
775        ComplexParameter -> False,
776        Value -> (ee/sw*Sqrt[zetaBsL*xibpw/gamma0bpw])/Sqrt[2],
777        InteractionOrder -> {QED, 1},
778        Description -> "BsW coupling (left-handed)"},
779
780  KBbLw == {
781        ParameterType -> Internal,
782        BlockName -> Kappa,
783        ComplexParameter -> False,
784        Value -> (gw*Sqrt[zetaBbL*xibpw/gamma0bpw])/Sqrt[2],
785        InteractionOrder -> {QED, 1},
786        Description -> "BbW coupling (left-handed)"},
787
788  KBdRw == {
789        ParameterType -> Internal,
790        BlockName -> Kappa,
791        ComplexParameter -> False,
792        Value -> (ee/sw*Sqrt[zetaBdR*xibpw/gamma0bpw])/Sqrt[2],
793        InteractionOrder -> {QED, 1},
794        Description -> "BdW coupling (right-handed)"},
795
796  KBsRw == {
797        ParameterType -> Internal,
798        BlockName -> Kappa,
799        ComplexParameter -> False,
800        Value -> (gw*Sqrt[zetaBsR*xibpw/gamma0bpw])/Sqrt[2],
801        InteractionOrder -> {QED, 1},
802        Description -> "BsW coupling (right-handed)"},
803
804  KBbRw == {
805        ParameterType -> Internal,
806        BlockName -> Kappa,
807        ComplexParameter -> False,
808        Value -> (gw*Sqrt[zetaBbR*xibpw/gamma0bpw])/Sqrt[2],
809        InteractionOrder -> {QED, 1},
810        Description -> "BbW coupling (right-handed)"},
811
812  KBdLz == {
813        ParameterType -> Internal,
814        BlockName -> Kappa,
815        ComplexParameter -> False,
816        Value -> (gw*Sqrt[zetaBdL*xibpz/gamma0bpz])/2/cw,
817        InteractionOrder -> {QED, 1},
818        Description -> "BdZ coupling (left-handed)"},
819
820  KBsLz == {
821        ParameterType -> Internal,
822        BlockName -> Kappa,
823        ComplexParameter -> False,
824        Value -> (gw*Sqrt[zetaBsL*xibpz/gamma0bpz])/2/cw,
825        InteractionOrder -> {QED, 1},
826        Description -> "BsZ coupling (left-handed)"},
827
828  KBbLz == {
829        ParameterType -> Internal,
830        BlockName -> Kappa,
831        ComplexParameter -> False,
832        Value -> (gw*Sqrt[zetaBbL*xibpz/gamma0bpz])/2/cw,
833        InteractionOrder -> {QED, 1},
834        Description -> "BbZ coupling (left-handed)"},
835
836  KBdRz == {
837        ParameterType -> Internal,
838        BlockName -> Kappa,
839        ComplexParameter -> False,
840        Value -> (gw*Sqrt[zetaBdR*xibpz/gamma0bpz])/2/cw,
841        InteractionOrder -> {QED, 1},
842        Description -> "BdZ coupling (right-handed)"},
843
844  KBsRz == {
845        ParameterType -> Internal,
846        BlockName -> Kappa,
847        ComplexParameter -> False,
848        Value -> (gw*Sqrt[zetaBsR*xibpz/gamma0bpz])/2/cw,
849        InteractionOrder -> {QED, 1},
850        Description -> "BsZ coupling (right-handed)"},
851
852  KBbRz == {
853        ParameterType -> Internal,
854        BlockName -> Kappa,
855        ComplexParameter -> False,
856        Value -> (gw*Sqrt[zetaBbR*xibpz/gamma0bpz])/2/cw,
857        InteractionOrder -> {QED, 1},
858        Description -> "BbZ coupling (right-handed)"},
859
860  KBdLh == {
861        ParameterType -> Internal,
862        BlockName -> Kappa,
863        ComplexParameter -> False,
864        Value -> (Sqrt[zetaBdL*xibph/gamma0bph]),
865        InteractionOrder -> {QED, 0},
866        Description -> "BdH coupling (left-handed)"},
867
868  KBsLh == {
869        ParameterType -> Internal,
870        BlockName -> Kappa,
871        ComplexParameter -> False,
872        Value -> (Sqrt[zetaBsL*xibph/gamma0bph]),
873        InteractionOrder -> {QED, 0},
874        Description -> "BsH coupling (left-handed)"},
875
876  KBbLh == {
877        ParameterType -> Internal,
878        BlockName -> Kappa,
879        ComplexParameter -> False,
880        Value -> (Sqrt[zetaBbL*xibph/gamma0bph]),
881        InteractionOrder -> {QED, 0},
882        Description -> "BbH coupling (left-handed)"},
883
884  KBdRh == {
885        ParameterType -> Internal,
886        BlockName -> Kappa,
887        ComplexParameter -> False,
888        Value -> (Sqrt[zetaBdR*xibph/gamma0bph]),
889        InteractionOrder -> {QED, 0},
890        Description -> "BdH coupling (right-handed)"},
891
892  KBsRh == {
893        ParameterType -> Internal,
894        BlockName -> Kappa,
895        ComplexParameter -> False,
896        Value -> (Sqrt[zetaBsR*xibph/gamma0bph]),
897        InteractionOrder -> {QED, 0},
898        Description -> "BsH coupling (right-handed)"},
899
900  KBbRh == {
901        ParameterType -> Internal,
902        BlockName -> Kappa,
903        ComplexParameter -> False,
904        Value -> (Sqrt[zetaBbR*xibph/gamma0bph]),
905        InteractionOrder -> {QED, 0},
906        Description -> "BbH coupling (right-handed)"},
907
908   (* Internal Width functions *)
909
910  gamma0tpw == {
911        ParameterType -> Internal,
912        BlockName -> WIDTH,
913        ComplexParameter -> False,
914        Value -> (1-MW^2/MTP^2)*(1+MW^2/MTP^2-2*MW^4/MTP^4),
915        Description -> "T partial width for T>Wq (massless q)"},
916
917  gamma0tpz == {
918        ParameterType -> Internal,
919        BlockName -> WIDTH,
920        ComplexParameter -> False,
921        Value -> 1/2*(1-MZ^2/MTP^2)*(1+MZ^2/MTP^2-2*MZ^4/MTP^4),
922        Description -> "T partial width for T>Zq (massless q)"},
923
924  gamma0tph == {
925        ParameterType -> Internal,
926        BlockName -> WIDTH,
927        ComplexParameter -> False,
928        Value -> 1/2*(1-MH^2/MTP^2)^2,
929        Description -> "T partial width for T>Hq (massless q)"},
930
931  gamma0bpw == {
932        ParameterType -> Internal,
933        BlockName -> WIDTH,
934        ComplexParameter -> False,
935        Value -> (1-MW^2/MBP^2)*(1+MW^2/MBP^2-2*MW^4/MBP^4),
936        Description -> "B partial width for B>Wq (massless q)"},
937
938  gamma0bpz == {
939        ParameterType -> Internal,
940        BlockName -> WIDTH,
941        ComplexParameter -> False,
942        Value -> 1/2*(1-MZ^2/MBP^2)*(1+MZ^2/MBP^2-2*MZ^4/MBP^4),
943        Description -> "B partial width for B>Zq (massless q)"},
944
945  gamma0bph == {
946        ParameterType -> Internal,
947        BlockName -> WIDTH,
948        ComplexParameter -> False,
949        Value -> 1/2*(1-MH^2/MBP^2)^2,
950        Description -> "B partial width for B>Hq (massless q)"},
951
952  gamma0xw == {
953        ParameterType -> Internal,
954        BlockName -> WIDTH,
955        ComplexParameter -> False,
956        Value -> (1-MW^2/MX^2)*(1+MW^2/MX^2-2*MW^4/MX^4),
957        Description -> "X partial width for X>Wq (massless q)"},
958
959  gamma0yw == {
960        ParameterType -> Internal,
961        BlockName -> WIDTH,
962        ComplexParameter -> False,
963        Value -> (1-MW^2/MY^2)*(1+MW^2/MY^2-2*MW^4/MY^4),
964        Description -> "Y partial width for Y>Wq (massless q)"}}
965
966(************** Gauge Groups ******************)
967
968M$GaugeGroups = {
969
970  U1Y == {
971        Abelian -> True,
972        GaugeBoson -> B,
973        Charge -> Y,
974        CouplingConstant -> g1},
975
976  SU2L == {
977        Abelian -> False,
978        GaugeBoson -> Wi,
979        StructureConstant -> Eps,
980        CouplingConstant -> gw},
981
982  SU3C == {
983        Abelian -> False,
984        GaugeBoson -> G,
985        StructureConstant -> f,
986        SymmetricTensor -> dSUN,
987        Representations -> {T, Colour},
988        CouplingConstant -> gs}
989}
990
991(********* Particle Classes **********)
992
993M$ClassesDescription = {
994
995(********** Fermions ************)
996        (* Leptons (neutrino): I_3 = +1/2, Q = 0 *)
997  F[1] == {
998        ClassName -> vl,
999        ClassMembers -> {ve,vm,vt},
1000        FlavorIndex -> Generation,
1001        SelfConjugate -> False,
1002        Indices -> {Index[Generation]},
1003        Mass -> 0,
1004        Width -> 0,
1005        QuantumNumbers -> {LeptonNumber -> 1},
1006        PropagatorLabel -> {"v", "ve", "vm", "vt"} ,
1007        PropagatorType -> S,
1008        PropagatorArrow -> Forward,
1009        PDG -> {12,14,16},
1010        FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} },
1011
1012        (* Leptons (electron): I_3 = -1/2, Q = -1 *)
1013  F[2] == {
1014        ClassName -> l,
1015        ClassMembers -> {e, m, tt},
1016        FlavorIndex -> Generation,
1017        SelfConjugate -> False,
1018        Indices -> {Index[Generation]},
1019        Mass -> {Ml, {Me, 5.11 * 10^(-4)}, {MM, 0.10566}, {MTA, 1.777}},
1020        Width -> 0,
1021        QuantumNumbers -> {Q -> -1, LeptonNumber -> 1},
1022        PropagatorLabel -> {"l", "e", "m", "tt"},
1023        PropagatorType -> Straight,
1024        ParticleName -> {"e-", "m-", "tt-"},
1025        AntiParticleName -> {"e+", "m+", "tt+"},
1026        PropagatorArrow -> Forward,
1027        PDG -> {11, 13, 15},
1028        FullName -> {"Electron", "Muon", "Tau"} },
1029
1030        (* Quarks (u): I_3 = +1/2, Q = +2/3 *)
1031  F[3] == {
1032        ClassMembers -> {u, c, t},
1033        ClassName -> uq,
1034        FlavorIndex -> Generation,
1035        SelfConjugate -> False,
1036        Indices -> {Index[Generation], Index[Colour]},
1037        Mass -> {Mu, {MU, 2.55*10^(-3)}, {MC, 1.40}, {MT, 174.3}},
1038        Width -> {0, 0, {WT, 1.51013490}},
1039        QuantumNumbers -> {Q -> 2/3},
1040        PropagatorLabel -> {"uq", "u", "c", "t"},
1041        PropagatorType -> Straight,
1042        PropagatorArrow -> Forward,
1043        PDG -> {2, 4, 6},
1044        FullName -> {"u-quark", "c-quark", "t-quark"}},
1045
1046        (* Quarks (d): I_3 = -1/2, Q = -1/3 *)
1047  F[4] == {
1048        ClassMembers -> {d, s, b},
1049        ClassName -> dq,
1050        FlavorIndex -> Generation,
1051        SelfConjugate -> False,
1052        Indices -> {Index[Generation], Index[Colour]},
1053        Mass -> {Md, {MD,  5.04*10^(-3)}, {MS, 0.101}, {MB, 4.2}},
1054        Width -> 0,
1055        QuantumNumbers -> {Q -> -1/3},
1056        PropagatorLabel -> {"dq", "d", "s", "b"},
1057        PropagatorType -> Straight,
1058        PropagatorArrow -> Forward,
1059        PDG -> {1,3,5},
1060        FullName -> {"d-quark", "s-quark", "b-quark"} },
1061
1062        (* VLQ Quarks X, Q=5/3*)
1063  F[5] == {
1064        ClassMembers -> {x},
1065        ClassName -> xq,
1066        SelfConjugate -> False,
1067        Indices -> {Index[Colour]},
1068        Mass -> {{MX,600}},
1069        Width -> {{WX, 1}},
1070        QuantumNumbers -> {Q -> 5/3},
1071        PropagatorLabel -> {"x"},
1072        PropagatorType -> Straight,
1073        PropagatorArrow -> Forward,
1074        PDG -> {6000005},
1075        FullName -> {"X-quark"}},
1076
1077        (* VLQ Quarks T, Q=2/3 *)
1078  F[6] == {
1079        ClassName -> tpq,
1080        ClassMembers -> {tp},
1081        SelfConjugate -> False,
1082        Indices -> {Index[Colour]},
1083        Mass -> {{MTP,600}},
1084        Width -> {{WTP,1}},
1085        QuantumNumbers -> {Q -> 2/3},
1086        PropagatorLabel -> {"tp"},
1087        PropagatorType -> Straight,
1088        PropagatorArrow -> Forward,
1089        PDG -> {6000006},
1090        FullName -> {"T-quark"}},
1091
1092        (* VLQ Quarks B, Q=-1/3 *)
1093  F[7] == {
1094        ClassName -> bpq,
1095        ClassMembers -> {bp},
1096        SelfConjugate -> False,
1097        Indices -> {Index[Colour]},
1098        Mass -> {{MBP,600}},
1099        Width -> {{WBP, 1}},
1100        QuantumNumbers -> {Q -> -1/3},
1101        PropagatorLabel -> {"bp"},
1102        PropagatorType -> Straight,
1103        PropagatorArrow -> Forward,
1104        PDG -> {6000007},
1105        FullName -> {"B-quark"}},
1106
1107        (* VLQ Quarks Y, Q=-4/3 *)
1108  F[8] == {
1109        ClassMembers -> {y},
1110        ClassName -> yq,
1111        SelfConjugate -> False,
1112        Indices -> {Index[Colour]},
1113        Mass -> {{MY,600}},
1114        Width -> {{WY, 1}},
1115        QuantumNumbers -> {Q -> -4/3},
1116        PropagatorLabel -> {"y"},
1117        PropagatorType -> Straight,
1118        PropagatorArrow -> Forward,
1119        PDG -> {6000008},
1120        FullName -> {"Y-quark"}},
1121
1122(********** Ghosts **********)
1123        U[1] == {
1124       ClassName -> ghA,
1125       SelfConjugate -> False,
1126       Indices -> {},
1127       Ghost -> A,
1128       Mass -> 0,
1129       QuantumNumbers -> {GhostNumber -> 1},
1130       PropagatorLabel -> uA,
1131       PropagatorType -> GhostDash,
1132       PropagatorArrow -> Forward},
1133
1134        U[2] == {
1135       ClassName -> ghZ,
1136       SelfConjugate -> False,
1137       Indices -> {},
1138       Mass -> {MZ, 91.1876},
1139       Ghost -> Z,
1140       QuantumNumbers -> {GhostNumber -> 1},
1141       PropagatorLabel -> uZ,
1142       PropagatorType -> GhostDash,
1143       PropagatorArrow -> Forward},
1144
1145        U[31] == {
1146       ClassName -> ghWp,
1147       SelfConjugate -> False,
1148       Indices -> {},
1149       Mass -> {MW, Internal},
1150       Ghost -> W,
1151       QuantumNumbers -> {Q-> 1, GhostNumber -> 1},
1152       PropagatorLabel -> uWp,
1153       PropagatorType -> GhostDash,
1154       PropagatorArrow -> Forward},
1155
1156   U[32] == {
1157       ClassName -> ghWm,
1158       SelfConjugate -> False,
1159       Indices -> {},
1160       Mass -> {MW, Internal},
1161       Ghost -> Wbar,
1162       QuantumNumbers -> {Q-> -1, GhostNumber -> 1},
1163       PropagatorLabel -> uWm,
1164       PropagatorType -> GhostDash,
1165       PropagatorArrow -> Forward},
1166
1167        U[4] == {
1168       ClassName -> ghG,
1169       SelfConjugate -> False,
1170       Indices -> {Index[Gluon]},
1171       Ghost -> G,
1172       Mass -> 0,
1173       QuantumNumbers -> {GhostNumber -> 1},
1174       PropagatorLabel -> uG,
1175       PropagatorType -> GhostDash,
1176       PropagatorArrow -> Forward},
1177
1178        U[5] == {
1179        ClassName -> ghWi,
1180        Unphysical -> True,
1181        Definitions -> {ghWi[1] -> (ghWp + ghWm)/Sqrt[2],
1182                        ghWi[2] -> (ghWm - ghWp)/Sqrt[2]/I,
1183                        ghWi[3] -> cw ghZ + sw ghA},
1184        SelfConjugate -> False,
1185        Ghost -> Wi,
1186        Indices -> {Index[SU2W]},
1187        FlavorIndex -> SU2W},
1188
1189        U[6] == {
1190        ClassName -> ghB,
1191        SelfConjugate -> False,
1192        Definitions -> {ghB -> -sw ghZ + cw ghA},
1193        Indices -> {},
1194        Ghost -> B,
1195        Unphysical -> True},
1196
1197(************ Gauge Bosons ***************)
1198        (* Gauge bosons: Q = 0 *)
1199  V[1] == {
1200        ClassName -> A,
1201        SelfConjugate -> True,
1202        Indices -> {},
1203        Mass -> 0,
1204        Width -> 0,
1205        PropagatorLabel -> "a",
1206        PropagatorType -> W,
1207        PropagatorArrow -> None,
1208        PDG -> 22,
1209        FullName -> "Photon" },
1210
1211  V[2] == {
1212        ClassName -> Z,
1213        SelfConjugate -> True,
1214        Indices -> {},
1215        Mass -> {MZ, 91.1876},
1216        Width -> {WZ, 2.44639985},
1217        PropagatorLabel -> "Z",
1218        PropagatorType -> Sine,
1219        PropagatorArrow -> None,
1220        PDG -> 23,
1221        FullName -> "Z" },
1222
1223        (* Gauge bosons: Q = -1 *)
1224  V[3] == {
1225        ClassName -> W,
1226        SelfConjugate -> False,
1227        Indices -> {},
1228        Mass -> {MW, Internal},
1229        Width -> {WW, 2.03535570},
1230        QuantumNumbers -> {Q -> 1},
1231        PropagatorLabel -> "W",
1232        PropagatorType -> Sine,
1233        PropagatorArrow -> Forward,
1234        ParticleName ->"W+",
1235        AntiParticleName ->"W-",
1236        PDG -> 24,
1237        FullName -> "W" },
1238
1239V[4] == {
1240        ClassName -> G,
1241        SelfConjugate -> True,
1242        Indices -> {Index[Gluon]},
1243        Mass -> 0,
1244        Width -> 0,
1245        PropagatorLabel -> G,
1246        PropagatorType -> C,
1247        PropagatorArrow -> None,
1248        PDG -> 21,
1249        FullName -> "G" },
1250
1251V[5] == {
1252        ClassName -> Wi,
1253        Unphysical -> True,
1254        Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2],
1255                        Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I,
1256                        Wi[mu_, 3] -> cw Z[mu] + sw A[mu]},
1257        SelfConjugate -> True,
1258        Indices -> {Index[SU2W]},
1259        FlavorIndex -> SU2W,
1260        Mass -> 0,
1261        PDG -> {1,2,3}},
1262
1263V[6] == {
1264        ClassName -> B,
1265        SelfConjugate -> True,
1266        Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]},
1267        Indices -> {},
1268        Mass -> 0,
1269        Unphysical -> True},
1270
1271
1272(************ Scalar Fields **********)
1273        (* physical Higgs: Q = 0 *)
1274  S[1] == {
1275        ClassName -> H,
1276        SelfConjugate -> True,
1277        Mass -> {MH, 125},
1278        Width -> {WH, 0.00679485838},
1279        PropagatorLabel -> "H",
1280        PropagatorType -> D,
1281        PropagatorArrow -> None,
1282        PDG -> 25,
1283        TeXParticleName -> "\\phi",
1284        TeXClassName -> "\\phi",
1285        FullName -> "H" },
1286
1287S[2] == {
1288        ClassName -> phi,
1289        SelfConjugate -> True,
1290        Mass -> {MZ, 91.5445065},
1291        Width -> Wphi,
1292        PropagatorLabel -> "Phi",
1293        PropagatorType -> D,
1294        PropagatorArrow -> None,
1295        ParticleName ->"phi0",
1296        PDG -> 250,
1297        FullName -> "Phi",
1298        Goldstone -> Z },
1299
1300S[3] == {
1301        ClassName -> phi2,
1302        SelfConjugate -> False,
1303        Mass -> {MW, Internal},
1304        Width -> Wphi2,
1305        PropagatorLabel -> "Phi2",
1306        PropagatorType -> D,
1307        PropagatorArrow -> None,
1308        ParticleName ->"phi+",
1309        AntiParticleName ->"phi-",
1310        PDG -> 251,
1311        FullName -> "Phi2",
1312        TeXClassName -> "\\phi^+",
1313        TeXParticleName -> "\\phi^+",
1314        TeXAntiParticleName -> "\\phi^-",
1315        Goldstone -> W,
1316        QuantumNumbers -> {Q -> 1}}
1317}
1318
1319
1320(*****************************************************************************************)
1321
1322(* SM Lagrangian *)
1323
1324(******************** Gauge F^2 Lagrangian terms*************************)
1325(*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
1326 LGauge = -1/4 (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3])*
1327                                        (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i4, i5] Wi[mu, i4] Wi[nu, i5]) -
1328       
1329        1/4 (del[B[nu], mu] - del[B[mu], nu])^2 -
1330       
1331        1/4 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3])*
1332                 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a4, a5] G[mu, a4] G[nu, a5]);
1333
1334
1335(********************* Fermion Lagrangian terms*************************)
1336(*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
1337 LFermions = Module[{Lkin, LQCD, LEWleft, LEWright},
1338
1339    Lkin = I uqbar.Ga[mu].del[uq, mu] +
1340        I dqbar.Ga[mu].del[dq, mu] +
1341        I lbar.Ga[mu].del[l, mu] +
1342        I vlbar.Ga[mu].del[vl, mu];
1343
1344    LQCD = gs (uqbar.Ga[mu].T[a].uq +
1345        dqbar.Ga[mu].T[a].dq)G[mu, a];
1346
1347    LBright =
1348       -2ee/cw B[mu]/2 lbar.Ga[mu].ProjP.l +           (*Y_lR=-2*)
1349        4ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjP.uq -       (*Y_uR=4/3*)
1350        2ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjP.dq;        (*Y_dR=-2/3*)
1351
1352    LBleft =
1353       -ee/cw B[mu]/2 vlbar.Ga[mu].ProjM.vl -          (*Y_LL=-1*)
1354        ee/cw B[mu]/2 lbar.Ga[mu].ProjM.l  +           (*Y_LL=-1*)
1355        ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjM.uq +        (*Y_QL=1/3*)
1356        ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjM.dq ;        (*Y_QL=1/3*)
1357       
1358    LWleft = ee/sw/2(
1359        vlbar.Ga[mu].ProjM.vl Wi[mu, 3] -              (*sigma3 = ( 1   0 )*)
1360        lbar.Ga[mu].ProjM.l Wi[mu, 3] +                (*         ( 0  -1 )*)
1361       
1362        Sqrt[2] vlbar.Ga[mu].ProjM.l W[mu] +
1363        Sqrt[2] lbar.Ga[mu].ProjM.vl Wbar[mu]+
1364       
1365        uqbar.Ga[mu].ProjM.uq Wi[mu, 3] -              (*sigma3 = ( 1   0 )*)
1366        dqbar.Ga[mu].ProjM.dq Wi[mu, 3] +              (*         ( 0  -1 )*)
1367       
1368        Sqrt[2] uqbar.Ga[mu].ProjM.CKM.dq W[mu] +
1369        Sqrt[2] dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[mu]
1370        );
1371
1372    Lkin + LQCD + LBright + LBleft + LWleft];
1373
1374
1375(** Note : Modifications to the SM W and Z currents should be considered here above **)
1376
1377(******************** Higgs Lagrangian terms****************************)
1378 Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}];
1379 Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}];
1380 
1381
1382   
1383 LHiggs := Block[{PMVec, WVec, Dc, Dcbar, Vphi},
1384   
1385    PMVec = Table[PauliSigma[i], {i, 3}];   
1386    Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
1387
1388        (*Y_phi=1*)
1389    Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
1390    Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
1391    Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2;
1392
1393    (Dcbar[Phibar, mu]).Dc[Phi, mu] - Vphi[Phi, Phibar]];
1394   
1395
1396(*************** Yukawa Lagrangian***********************)
1397LYuk := If[FeynmanGauge,
1398
1399      Module[{s,r,n,m,i},                                                                 -
1400              yd[m] CKM[n,m]     uqbar[s,n,i].ProjP[s,r].dq[r,m,i] (-I phi2)              -
1401              yd[n]              dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H +I phi)/Sqrt[2]   -
1402         
1403              yu[n]              uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H -I phi)/Sqrt[2]   + (*This sign from eps matrix*)       
1404              yu[m] Conjugate[CKM[m,n]] dqbar[s,n,i].ProjP[s,r].uq[r,m,i] ( I phi2bar)    -
1405       
1406              yl[n]              vlbar[s,n].ProjP[s,r].l[r,n]      (-I phi2)              -
1407              yl[n]               lbar[s,n].ProjP[s,r].l[r,n]      (v+H +I phi)/Sqrt[2]
1408           ],
1409           
1410           Module[{s,r,n,m,i},                                                    -
1411              yd[n]              dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2]  -
1412              yu[n]              uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2]  -
1413              yl[n]               lbar[s,n].ProjP[s,r].l[r,n]      (v+H)/Sqrt[2]
1414           ]
1415         ];
1416
1417LYukawa := LYuk + HC[LYuk];
1418
1419(** Note : Modifications to the SM H currents should be considered here above **)
1420
1421(**************Ghost terms**************************)
1422(* Now we need the ghost terms which are of the form:             *)
1423(* - g * antighost * d_BRST G                                     *)
1424(* where d_BRST G is BRST transform of the gauge fixing function. *)
1425
1426LGhost := If[FeynmanGauge,
1427                Block[{dBRSTG,LGhostG,dBRSTWi,LGhostWi,dBRSTB,LGhostB},
1428               
1429        (***********First the pure gauge piece.**********************) 
1430        dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
1431                LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];
1432       
1433        dBRSTWi[mu_,i_] := sw/ee Module[{i2, i3}, del[ghWi[i], mu] + ee/sw Eps[i,i2,i3] Wi[mu,i2] ghWi[i3] ];
1434                LGhostWi := - ee/sw ghWibar[a].del[dBRSTWi[mu,a],mu];   
1435       
1436        dBRSTB[mu_] := cw/ee del[ghB, mu];
1437                LGhostB := - ee/cw ghBbar.del[dBRSTB[mu],mu];
1438       
1439        (***********Next the piece from the scalar field.************)
1440        LGhostphi := -   ee/(2*sw*cw) MW ( - I phi2    ( (cw^2-sw^2)ghWpbar.ghZ + 2sw*cw ghWpbar.ghA )  +
1441                        I phi2bar ( (cw^2-sw^2)ghWmbar.ghZ + 2sw*cw ghWmbar.ghA )    ) -
1442                        ee/(2*sw) MW ( ( (v+H) + I phi) ghWpbar.ghWp + ( (v+H) - I phi) ghWmbar.ghWm   ) -
1443                        I ee/(2*sw) MZ ( - phi2bar ghZbar.ghWp + phi2 ghZbar.ghWm ) -
1444                        ee/(2*sw*cw) MZ (v+H) ghZbar.ghZ ;
1445                       
1446                       
1447        (***********Now add the pieces together.********************)
1448        LGhostG + LGhostWi + LGhostB + LGhostphi]
1449
1450,
1451
1452        (*If unitary gauge, only include the gluonic ghost.*)
1453                Block[{dBRSTG,LGhostG},
1454               
1455        (***********First the pure gauge piece.**********************) 
1456        dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
1457                LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];                 
1458                       
1459        (***********Now add the pieces together.********************)
1460        LGhostG]
1461
1462];
1463               
1464(*********SM Lagrangian*******)         
1465LSM := LGauge + LHiggs + LFermions + LYukawa  + LGhost;
1466
1467
1468(*********VLQ Lagrangians*******)
1469(** We assume that the physical and mass eigenstates match for vector-like quarks **)
1470               
1471(*********LT, EW interactions*******)
1472
1473LTW :=
1474+KT*KTuLw*(tpbar.W[mu].Ga[mu].ProjM.d)+KT*KTuRw*(tpbar.W[mu].Ga[mu].ProjP.d)+KT*KTuLw*(dbar.Wbar[mu].Ga[mu].ProjM.tp)+KT*KTuRw*(dbar.Wbar[mu].Ga[mu].ProjP.tp)+KT*KTcLw*(tpbar.W[mu].Ga[mu].ProjM.s)+KT*KTcRw*(tpbar.W[mu].Ga[mu].ProjP.s)+KT*KTcLw*(sbar.Wbar[mu].Ga[mu].ProjM.tp)+KT*KTcRw*(sbar.Wbar[mu].Ga[mu].ProjP.tp)+KT*KTtLw*(tpbar.W[mu].Ga[mu].ProjM.b)+KT*KTtRw*(tpbar.W[mu].Ga[mu].ProjP.b)+KT*KTtLw*(bbar.Wbar[mu].Ga[mu].ProjM.tp)+KT*KTtRw*(bbar.Wbar[mu].Ga[mu].ProjP.tp);
1475
1476LTZ :=+KT*KTuLz*(tpbar.Z[mu].Ga[mu].ProjM.u)+KT*KTuRz*(tpbar.Z[mu].Ga[mu].ProjP.u)+KT*KTuLz*(ubar.Z[mu].Ga[mu].ProjM.tp)+KT*KTuRz*(ubar.Z[mu].Ga[mu].ProjP.tp)+KT*KTcLz*(tpbar.Z[mu].Ga[mu].ProjM.c)+KT*KTcRz*(tpbar.Z[mu].Ga[mu].ProjP.c)+KT*KTcLz*(cbar.Z[mu].Ga[mu].ProjM.tp)+KT*KTcRz*(cbar.Z[mu].Ga[mu].ProjP.tp)+KT*KTtLz*(tpbar.Z[mu].Ga[mu].ProjM.t)+KT*KTtRz*(tpbar.Z[mu].Ga[mu].ProjP.t)+KT*KTtLz*(tbar.Z[mu].Ga[mu].ProjM.tp)+KT*KTtRz*(tbar.Z[mu].Ga[mu].ProjP.tp);
1477
1478LTH:=-KT*MTP*KTuLh*(tpbar.H.ProjP.u)/v-KT*MTP*KTuLh*(ubar.H.ProjM.tp)/v-KT*MTP*KTuRh*(tpbar.H.ProjM.u)/v-KT*MTP*KTuRh*(ubar.H.ProjP.tp)/v-KT*MTP*KTcLh*(tpbar.H.ProjP.c)/v-KT*MTP*KTcLh*(cbar.H.ProjM.tp)/v-KT*MTP*KTcRh*(tpbar.H.ProjM.c)/v-KT*MTP*KTcRh*(cbar.H.ProjP.tp)/v-KT*MTP*KTtLh*(tpbar.H.ProjP.t)/v-KT*MTP*KTtLh*(tbar.H.ProjM.tp)/v-KT*MTP*KTtRh*(tpbar.H.ProjM.t)/v-KT*MTP*KTtRh*(tbar.H.ProjP.tp)/v;
1479
1480
1481
1482(*********LB, EW interactions*******)
1483
1484LBW :=+KB*KBdLw*(bpbar.Wbar[mu].Ga[mu].ProjM.u)+KB*KBdRw*(bpbar.Wbar[mu].Ga[mu].ProjP.u)+KB*KBdLw*(ubar.W[mu].Ga[mu].ProjM.bp)+KB*KBdRw*(ubar.W[mu].Ga[mu].ProjP.bp)+KB*KBsLw*(bpbar.Wbar[mu].Ga[mu].ProjM.c)+KB*KBsRw*(bpbar.Wbar[mu].Ga[mu].ProjP.c)+KB*KBsLw*(cbar.W[mu].Ga[mu].ProjM.bp)+KB*KBsRw*(cbar.W[mu].Ga[mu].ProjP.bp)+KB*KBbLw*(bpbar.Wbar[mu].Ga[mu].ProjM.t)+KB*KBbRw*(bpbar.Wbar[mu].Ga[mu].ProjP.t)+KB*KBbLw*(tbar.W[mu].Ga[mu].ProjM.bp)+KB*KBbRw*(tbar.W[mu].Ga[mu].ProjP.bp);
1485
1486LBZ := +KB*KBdLz*(bpbar.Z[mu].Ga[mu].ProjM.d)+KB*KBdRz*(bpbar.Z[mu].Ga[mu].ProjP.d)+KB*KBdLz*(dbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBdRz*(dbar.Z[mu].Ga[mu].ProjP.bp)+KB*KBsLz*(bpbar.Z[mu].Ga[mu].ProjM.s)+KB*KBsRz*(bpbar.Z[mu].Ga[mu].ProjP.s)+KB*KBsLz*(sbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBsRz*(sbar.Z[mu].Ga[mu].ProjP.bp)+KB*KBbLz*(bpbar.Z[mu].Ga[mu].ProjM.b)+KB*KBbRz*(bpbar.Z[mu].Ga[mu].ProjP.b)+KB*KBbLz*(bbar.Z[mu].Ga[mu].ProjM.bp)+KB*KBbRz*(bbar.Z[mu].Ga[mu].ProjP.bp);
1487
1488LBH:=-KB*MBP*KBdLh*(bpbar.H.ProjP.d)/v-KB*MBP*KBdLh*(dbar.H.ProjM.bp)/v-KB*MBP*KBdRh*(bpbar.H.ProjM.d)/v-KB*MBP*KBdRh*(dbar.H.ProjP.bp)/v-KB*MBP*KBsLh*(bpbar.H.ProjP.s)/v-KB*MBP*KBsLh*(sbar.H.ProjM.bp)/v-KB*MBP*KBsRh*(bpbar.H.ProjM.s)/v-KB*MBP*KBsRh*(sbar.H.ProjP.bp)/v-KB*MBP*KBbLh*(bpbar.H.ProjP.b)/v-KB*MBP*KBbLh*(bbar.H.ProjM.bp)/v-KB*MBP*KBbRh*(bpbar.H.ProjM.b)/v-KB*MBP*KBbRh*(bbar.H.ProjP.bp)/v;
1489
1490(*********LX, EW interactions*******)
1491
1492
1493LXW :=
1494KX*KXuL*(xbar.W[mu].Ga[mu].ProjM.u)+KX*KXuR*(xbar.W[mu].Ga[mu].ProjP.u)+KX*KXuL*(ubar.Wbar[mu].Ga[mu].ProjM.x)+KX*KXuR*(ubar.Wbar[mu].Ga[mu].ProjP.x)+KX*KXcL*(xbar.W[mu].Ga[mu].ProjM.c)+KX*KXcR*(xbar.W[mu].Ga[mu].ProjP.c)+KX*KXcL*(cbar.Wbar[mu].Ga[mu].ProjM.x)+KX*KXcR*(cbar.Wbar[mu].Ga[mu].ProjP.x)+KX*KXtL*(xbar.W[mu].Ga[mu].ProjM.t)+KX*KXtR*(xbar.W[mu].Ga[mu].ProjP.t)+KX*KXtL*(tbar.Wbar[mu].Ga[mu].ProjM.x)+KX*KXtR*(tbar.Wbar[mu].Ga[mu].ProjP.x);
1495
1496
1497
1498(*********LY, EW interactions*******)
1499
1500LYW :=
1501+KY*KYdL*(ybar.Wbar[mu].Ga[mu].ProjM.d)+KY*KYdR*(ybar.Wbar[mu].Ga[mu].ProjP.d)+KY*KYdL*(dbar.W[mu].Ga[mu].ProjM.y)+KY*KYdR*(dbar.W[mu].Ga[mu].ProjP.y)+KY*KYsL*(ybar.Wbar[mu].Ga[mu].ProjM.s)+KY*KYsR*(ybar.Wbar[mu].Ga[mu].ProjP.s)+KY*KYsL*(sbar.W[mu].Ga[mu].ProjM.y)+KY*KYsR*(sbar.W[mu].Ga[mu].ProjP.y)+KY*KYbL*(ybar.Wbar[mu].Ga[mu].ProjM.b)+KY*KYbR*(ybar.Wbar[mu].Ga[mu].ProjP.b)+KY*KYbL*(bbar.W[mu].Ga[mu].ProjM.y)+KY*KYbR*(bbar.W[mu].Ga[mu].ProjP.y);
1502
1503
1504(*********Kinetic, mass & QCD lagrangians for VLQ*******)
1505
1506LTK := I tpbar.Ga[mu].del[tp, mu];
1507LBK := I bpbar.Ga[mu].del[bp, mu];
1508LXK := I xbar.Ga[mu].del[x, mu];
1509LYK := I ybar.Ga[mu].del[y, mu];
1510
1511LTM := -MTP.tpbar.tp;
1512LBM := -MBP.bpbar.bp;
1513LXM := -MX.xbar.x;
1514LYM := -MY.ybar.y;
1515
1516
1517LTG :=  gs (tpbar.Ga[mu].T[a].tp)G[mu, a];
1518LBG :=  gs (bpbar.Ga[mu].T[a].bp)G[mu, a];
1519LXG :=  gs (xbar.Ga[mu].T[a].x)G[mu, a];
1520LYG :=  gs (ybar.Ga[mu].T[a].y)G[mu, a];
1521
1522
1523LTA :=  2*ee/3 (tpbar.Ga[mu].tp)A[mu];
1524LBA :=  -1*ee/3 (bpbar.Ga[mu].bp)A[mu];
1525LXA :=  5*ee/3 (xbar.Ga[mu].x)A[mu];
1526LYA :=  -4*ee/3 (ybar.Ga[mu].y)A[mu];
1527
1528
1529LT := LTW + LTZ + LTH + LTK + LTM + LTG +LTA ;
1530LB := LBW + LBZ + LBH + LBK + LBM + LBG +LBA ;
1531LX := LXW + LXK + LXM + LXG + LXA ;
1532LY := LYW + LYK + LYM + LYG + LYA ;
1533
1534LVLQ := LT + LB + LX + LY;
1535
1536
1537
1538(*********Total Lagrangian*******)
1539
1540L := LSM + LVLQ;
1541
1542